A Proof of a Recursion for Bessel Moments

نویسندگان

  • Jonathan M. Borwein
  • Bruno Salvy
چکیده

We provide a proof of a conjecture in [2] on the existence and form of linear recursions for moments of powers of the Bessel function K0.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Proof of a Recurrence for Bessel Moments

We provide a proof of a conjecture in [2] on the existence and form of linear recursions for moments of powers of the Bessel function K0.

متن کامل

Linearization coefficients of Bessel polynomials and properties of Student-t distributions

We prove positivity results about linearization and connection coefficients for Bessel polynomials. The proof is based on a recursion formula and explicit formulas for the coefficients in special cases. The result implies that the distribution of a convex combination of independent Studentt random variables with arbitrary odd degrees of freedom has a density which is a convex combination of cer...

متن کامل

Linearization coefficients of Bessel polynomials

We prove positivity results about linearization and connection coefficients for Bessel polynomials. The proof is based on a recursion formula and explicit formulas for the coefficients in special cases. The result implies that the distribution of a convex combination of independent Studentt random variables with arbitrary odd degrees of freedom has a density which is a convex combination of cer...

متن کامل

Calculation of, and bounds for, the multipole moments of stationary spacetimes

In this paper the multipole moments of stationary asymptotically flat spacetimes are considered. We show how the tensorial recursion of Geroch and Hansen can be replaced by a scalar recursion on R. We also give a bound on the multipole moments. This gives a proof of the ”necessary part” of a long standing conjecture due to Geroch.

متن کامل

Quaternion Bessel-Fourier moments and their invariant descriptors for object reconstruction and recognition

In this paper, the quaternion Bessel-Fourier moments are introduced. The significance of phase information in quaternion Bessel-Fourier moments is investigated and an accurate estimation method for rotation angle is described. Furthermore, a new set of invariant descriptors based on the magnitude and the phase information of quaternion Bessel-Fourier moments is derived. Experimental results sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/0706.1409  شماره 

صفحات  -

تاریخ انتشار 2007